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i 1.3 Stress Analysis

» The sectioned area to be subdivided into small areas, such as A4 shown in Fig.1-9a.
» Atypical finite yet very small force AF , acting on AA.
> We will replace AF by its three components , namely, AF, , AF,, and AF,, which

are taken tangent, tangent, and normal to the area, respectively.

a,

Strength of Materials: Second Class
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» As AA approaches zero, so do AF and its components; however, the
quotient of the force and area will, in general, approach a finite limit.

» This quotient is called stress.

» Stress describes the /ntensity of the internal force acting on a specific
plane (area) passing through a point.

“* Normal Stress o (sigma). The intensity of the force acting
normal to AA. Since AF, is normal to the area then:-

. AF,
T2 7 a0 AA

If the normal force or stress “pulls” on AA , it is referred to as zensile stress,
whereas if it “pushes” on AA it is called compressive stress .
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% Shear Stress t(Tau). The intensity of force acting tangent to
AA. Here we have shear stress components,

AR AF,
@ A0 AA T = M A

General State of Stress.

This state of stress is then characterized by
three components acting on each face of
the element, Fig. 1-11..
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1.4 Average Normal Stress in an Axially Loaded Bar

= Asaresult, each small area AA on the cross section is subjected to a force
AF = o AA

= the sum of these forces acting over the entire cross-sectional area must be
equivalent to the internal resultant force P at the section.

= |fwe let AA = [ dA and therefore AF = [ dF, then, recognizing o is

constant, we have

/dFZ o dA e
A
P A

=0

P
T Internal force

"~ Cross-sectional
area

l External force
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P
o= —
A

Here:-

O = average normal stress at any point on the cross-sectional area

P = internal resultant normal force , which acts through the centroid of
the cross-sectional area. 7 is determined using the method of
sections and the equations of equilibrium

A = cross-sectional area of the bar where o is determined
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EX1:- The bar in Fig. 1-15 ahas a constant width of 35 mm and a thickness of 10 mm.
Determine the maximum average normal stress in the bar when it is subjected to the

loading shown.
C 4kN

2D e G G

35 mm
(a)

N G
12 kN<—@__—‘.—> P,s=12kN

9kN

12 kN<—@>z .M — P, =30kN

9 kN

_ -
(b)

P (kN)
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Average Normal Stress. 30 kN

: _ Py _ 30(10) N
BC 4 (0.035 m)(0.010 m)

= §85.7 MPa

Graphically, the volume represented by this distribution
of stress is equivalent to the load of 30 kN; that is, 30
KN = (85.7 MPa)(35 mm)(10 mm).
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1.5 Average Shear Stress.

= If the supports are considered rigid, and F is large enough, it will cause the
material of the bar to deform and fail along the planes identified by AB and
CD.

= A free-body diagram of the unsupported center segment of the bar, Fig. 1-
19 6, indicates that the shear force V= F\2 must be applied at each section
to hold the segment in equilibrium.
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= The average shear stress distributed over each sectioned area that
develops this shear force is defined by

v T Ave = average shear stress at the section, which is assumed to be the
same at each point located on the section

v V= internal resultant shear force on the section determined from the
equations of equilibrium

v A = area at the section
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The distribution of average shear stress acting over the sections is shown

In Fig. 1-19 ¢. Notice that T4, IS In the same directionas V , since
= the shear stress must create associated forces all of which contribute to
= the internal resultant force V at the section.
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Shear stress on bolt Shear stress on bonded area.

T =F/A =F/ nr2 T =F/bc.

Where; r is the radius of Where; (bc) is the area of contact
the bolt subjected to the shear force
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T=(F/2)/A=F/2A

Where; A is the parallel
area of the bolt
subjected to shear force
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T=(F/Y)/A=F/YA
A =cb

Where; A is the parallel area
of the bonded region
subjected to shear force
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The pin A used to connect the
linkage of this tractor is subjected
to double shearbecause shearing
stresses occur on the surface of the
pinat Band C. See Fig 1-21c.

Think About It
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Ex1:-Determine the average shear stress in the 20-mm-diameter pin at Aand
the 30-mm-diameter pin at B that support the beam in Fig. 1-21 4.

Solution

Internal Loadings. The forces on the pins
can be obtained by considering the
equilibrium of the beam, Fig. 1-21 6.
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4
Fg(g){ﬁm) —30kN(2m) =0 Fp= 125kN

3
BIF, =0, (125 kN)(g) — A, =0 A, = 750 kN

4
+13F, =0; A, + (125 kN)(E) ~30KN =0 A, =20kN_

Thus, the resultant force acting on pin A is

Fy = VA2 + A2 = V(750 kN)> + (20 kN)> = 21.36 kN
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& 1IN JD D

F, 21.36kN

V, = 2 = = 10.68 kN
AT 9 2

Vg = Fg = 12.5kN

Average Shear Stress.

Vv 10.68{ 10°Y N
(Ta)avg = — = (1) N _ 34.0 MPa

T 0.02 m)2
7 (0.02 m)
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1% 125(10°) N
(TB)avg = — = (1) N _ 17.7 MPa

I
~{0.03 m)?

(d)
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1.6 Allowable stress design.

= To ensure the safety of a structural member or mechanical
element, it Is necessary to restrict the applied load to one that is
less than the load the member (or element) can fully support.

Cranes are often supported using bearing
pads to give them stability. Care must be
taken not to crush the supporting surface,
due to the large bearing stress developed
between the pad and the surface.
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* One method of specifying the allowable load for a member is
to use a number called the factor of safety.

= The factor of safety (F.S.) is a ratio of the failure load Fz4;; to
the allowable load F;;,,, -

= Here Fr,;; IS found from experimental testing of the material,
and the factor of safety is selected based on experience
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= |f the load applied to the member is /inearly related to the
stress developed within the member, as in the case of using o
= PlIAand t4,,4= V/A, then

= we can also express the factor of safety as a ratio of the failure
stress o i1 (OF Tpg ) 10 the allowable stress o 44, (OF

Tallow )
= Here the area Awill cancel and so,
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ES. = - 1-9
O allow ( )
F.S, = —ul (1-10)
Tallow
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Ex1 :- The control arm is subjected to the loading shown in Fig.
1-25 a . Determine to the nearesti In. the required diameters of

the steel pins at A and C if the allowable shear stress for the steel
IS Tallow— 8 Ksi.

il B AW Fyp )
'@' - »\ «ﬂ
: 3 1in.

8 in. ” Single shear il
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y,
N Lg
w- &=
Double shear C 4 5 kip
C, 3 kip
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S Solution:- B

il Pin forces. A free-body diagram of o ‘

= the arm is shown in fig. 1-25b. For ' .

D equilibrium we have e

) q g_‘ = %ﬁ

.© Jin—] 2in |- 2W
— S kip
% C,  3kip

S C+IMc=0; Fyup(8in.) — 3kip (3in.) — Skip (3)(5in.) =0

= F.p = 3kip

=

> + SF,=0; —3kip—C,+5kip(3) =0 C, = 1kip

e +13F, = 0; C, — 3kip — Skip(3) =0 €, = 6kip

)

The pin at C resists the resultant force at C, which is

Fe= V(1kip)? + (6kip)? = 6.083 kip
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6.082 kip

] 3.041 kip
b 3.041 kip
Pinat C
Pin A. This pin 1s subjected to single shear, Fig. 1-25¢, so that
2 ®
A= ﬂ(d—‘*) _ _3kip : d, = 0.691 in.
Tallow 2 8 klp/ll‘l2
Use dy = %in. Ans.

Pin C. Since this pin i1s subjected to double shear, a shear force of
3.041 kip acts over its cross-sectional area between the arm and each
supporting leaf for the pin, Fig. 1-25d. We have

v dc\*  3.041kip _
A = : 7l — | = — >, dc = 0.696 1n.
Tallow 2 8 kip/in
Use de = %in. Ans.
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